Expression of the two isoforms of spinach ribulose 1,5-bisphosphate carboxylase activase and essentiality of the conserved lysine in the consensus nucleotide-binding domain.

نویسندگان

  • J B Shen
  • E M Orozco
  • W L Ogren
چکیده

The two isoforms of ribulose 1,2-bisphosphate carboxylase activase (Rbu-P2 carboxylase) from spinach (Spinacea oleracea L.) were individually purified from Escherichia coli transformed with expression vectors for the appropriate cDNAs. Both isoforms catalyzed activation of Rbu-P2 carboxylase (ribulose 1,5-bisphosphate carboxylase/oxygenase, EC 4.1.1.39) and ATP hydrolysis. The kinetics of the two isoforms with respect to ATP concentration were different, in that the 45-kDa polypeptide exhibited a sigmoidal response while a rectangular response was observed with the 41-kDa isoform. These observations suggest that the additional domain at the C terminus of the 45-kDa isoform modulates the ATP regulation of activity. Lysine 169, at the putative ATP-binding site of the 41-kDa form of Rbu-P2 carboxylase activase, was changed to arginine, isoleucine, and threonine by directed mutagenesis. These mutations abolished Rbu-P2 carboxylase activase and ATPase activities, as well as the capability of the protein to bind ATP. These results confirm that lysine 169 is an essential residue.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and expression of spinach leaf cDNA encoding ribulosebisphosphate carboxylase/oxygenase activase.

Ribulosebisphosphate carboxylase/oxygenase activase is a recently discovered enzyme that catalyzes the activation of ribulose-1,5-bisphosphate carboxylase/oxygenase ["rubisco"; ribulose-bisphosphate carboxylase; 3-phospho-D-glycerate carboxy-lyase (dimerizing), EC 4.1.1.39] in vivo. Clones of rubisco activase cDNA were isolated immunologically from spinach (Spinacea oleracea L.) and Arabidopsis...

متن کامل

Alteration of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase activase activities by site-directed mutagenesis.

Site-directed mutagenesis was performed on the 1.6 and 1.9 kilobase spinach (Spinacea oleracea) ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase cDNAs, encoding the 41 and 45 kilodalton (kD) isoforms of the enzyme, to create single amino acid changes in the putative ATP-binding site of Rubisco activase (Lys-107, Gln-109, and Ser-112) and in an unrelated cysteine residue (Cys-2...

متن کامل

Covalent modification of a highly reactive and essential lysine residue of ribulose-1,5-bisphosphate carboxylase/oxygenase activase.

Chemical modification of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase with water-soluble N-hydroxysuccinimide esters was used to identify a reactive lysyl residue that is essential for activity. Incubation of Rubisco activase with sulfosuccinimidyl-7-amino-4-methylcoumarin-3-acetate (AMCA-sulfo-NHS) or sulfosuccinimidyl-acetate (sulfo-NHS-acetate) caused progressive inacti...

متن کامل

Two residues of rubisco activase involved in recognition of the Rubisco substrate.

Rubisco activase is an AAA(+) protein, a superfamily with members that use a "Sensor 2" domain for substrate recognition. To determine whether the analogous domain of activase is involved in recognition of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39), two chimeric activases were constructed, interchanging a Sensor 2-containing region between activases from spinach and ...

متن کامل

Purification and assay of rubisco activase from leaves.

Ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) activase protein was purified from spinach leaves by ammonium sulfate precipitation and ion exchange fast protein liquid chromatography. This resulted in 48-fold purification with 70% recovery of activity and yielded up to 18 milligrams of rubisco activase protein from 100 grams of leaves. Based on these figures, the protein comprised ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 266 14  شماره 

صفحات  -

تاریخ انتشار 1991